Formation mechanism of overlapping grain boundaries in graphene chemical vapor deposition growth.
نویسندگان
چکیده
The formation of grain boundaries (GBs) in graphene films is both fundamentally interesting and practically important for many applications. A GB in graphene is known as a linear defect and is formed during the coalescence of two single crystalline graphene domains. The covalent binding between domains is broadly known as the mechanism of GB formation during graphene chemical vapor deposition (CVD) growth. Here, we demonstrate another GB formation mechanism, where two graphene domains are connected by weak van der Waals interactions between overlapping graphene layers. The formation mechanism of the overlapping GBs (OLGBs) is systematically explored theoretically and the proposed conditions for forming OLGBs are validated by experimental observations. This discovery leads to a deep understanding of the mechanism of graphene CVD growth and reveals potential means for graphene quality control in CVD synthesis.
منابع مشابه
Formation mechanism of overlapping grain boundaries in graphene chemical vapor deposition growth† †Electronic supplementary information (ESI) available: Fig. S1, Table S1, calculation of formation energies of different graphene edges, calculation of the Gibbs free energy variation during the overlapping of two H terminated graphene edges, calculations on the chemical potential of H2 and thermodynamic diagrams. See DOI: 10.1039/c6sc04535a Click here for additional data file.
Department of Mechanical and Biomedical E 83 Tat Chee Avenue, Kowloon, Hong Kong, Institute of Textiles and Clothing, Hong Ko Kong, China. E-mail: [email protected] College of Chemistry and Molecular Enginee R. China † Electronic supplementary information calculation of formation energies of diffe Gibbs free energy variation during th graphene edges, calculations on th thermodynamic diagram...
متن کاملElectronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition
We synthesize hexagonal shaped single-crystal graphene, with edges parallel to the zig-zag orientations, by ambient pressure CVD on polycrystalline Cu foils. We measure the electronic properties of such grains as well as of individual graphene grain boundaries, formed when two grains merged during the growth. The grain boundaries are visualized using Raman mapping of the D band intensity, and w...
متن کاملIntroducing Overlapping Grain Boundaries in Chemical Vapor Deposited Hexagonal Boron Nitride Monolayer Films
We demonstrate the growth of overlapping grain boundaries in continuous, polycrystalline hexagonal boron nitride (h-BN) monolayer films via scalable catalytic chemical vapor deposition. Unlike the commonly reported atomically stitched grain boundaries, these overlapping grain boundaries do not consist of defect lines within the monolayer films but are composed of self-sealing bilayer regions of...
متن کاملFormation of Graphene Grain Boundaries on Cu(100) Surface and a Route Towards Their Elimination in Chemical Vapor Deposition Growth
Grain boundaries (GBs) in graphene prepared by chemical vapor deposition (CVD) greatly degrade the electrical and mechanical properties of graphene and thus hinder the applications of graphene in electronic devices. The seamless stitching of graphene flakes can avoid GBs, wherein the identical orientation of graphene domain is required. In this letter, the graphene orientation on one of the mos...
متن کاملInfluence of [0001] tilt grain boundaries on the destruction of the quantum Hall effect in graphene
The half-integer quantum Hall effect (QHE) is often suppressed in graphene grown by chemical vapor deposition on metals. The reason behind the suppression is unclear, and we hypothesize that it might be connected to extended defects in the material. In this paper we present results for the quantum Hall effect in graphene with [0001] tilt grain boundaries connecting opposite sides of Hall bar de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical science
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2017